Expression, Purification, and Characterization of (R)-Sulfolactate Dehydrogenase (ComC) from the Rumen Methanogen Methanobrevibacter millerae SM9
نویسندگان
چکیده
(R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC from Methanobrevibacter millerae SM9 was cloned and expressed in Escherichia coli and biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen for α-ketoglutarate. Optimal activity was observed at pH 6.5. The apparent KM for coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate the Vmax was 93.9 μmol min-1 mg-1 and kcat was 62.8 s-1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.
منابع مشابه
The complete genome sequence of the rumen methanogen Methanobrevibacter millerae SM9
Methanobrevibacter millerae SM9 was isolated from the rumen of a sheep maintained on a fresh forage diet, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. It is the first rumen isolate from the Methanobrevibacter gottschalkii clade to have its genome sequence completed. The ...
متن کاملMolecular diversity of rumen methanogens from sheep in Western Australia.
The molecular diversity of rumen methanogens in sheep in Australia was investigated by using individual 16S rRNA gene libraries prepared from the rumen contents obtained from six merino sheep grazing pasture (326 clones), six sheep fed an oaten hay-based diet (275 clones), and five sheep fed a lucerne hay-based diet (132 clones). A total of 733 clones were examined, and the analysis revealed 65...
متن کاملRacemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase.
Chromohalobacter salexigens DSM 3043, whose genome has been sequenced, is known to degrade (R,S)-sulfolactate as a sole carbon and energy source for growth. Utilization of the compound(s) was shown to be quantitative, and an eight-gene cluster (Csal_1764-Csal_1771) was hypothesized to encode the enzymes in the degradative pathway. It comprised a transcriptional regulator (SuyR), a Tripartite Tr...
متن کاملA high-throughput screening assay for identification of inhibitors of the A1AO-ATP synthase of the rumen methanogen Methanobrevibacter ruminantium M1.
We report the development of a high-throughput screening platform to identify inhibitors of the membrane-bound A1Ao-ATP synthase from the rumen methanogen Methanobrevibacter ruminantium M1. Inhibitors identified in the screen were tested against growing cultures of M. ruminantium, validating the approach to identify new inhibitors of methanogens.
متن کاملDraft Genome Sequence of the Rumen Methanogen Methanobrevibacter olleyae YLM1
Methanobrevibacter olleyaeYLM1 is a hydrogenotrophic methanogen, isolated from the rumen of a lamb. Its genome has been sequenced to provide information on the genomic diversity of rumen methanogens and support the development of approaches to reduce methane formation by ruminants.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017